

MOS FIELD EFFECT TRANSISTOR

2SJ601

SWITCHING P-CHANNEL POWER MOS FET INDUSTRIAL USE

DESCRIPTION

The 2SJ601 is P-channel MOS Field Effect Transistor designed for solenoid, motor and lamp driver.

FEATURES

• Low on-state resistance:

 $R_{\text{DS(on)1}}$ = 31 m Ω MAX. (Vgs = -10 V, Ip = -18 A)

 $R_{DS(on)2} = 46 \text{ m}\Omega \text{ MAX.} \text{ (Vgs} = -4.0 \text{ V, Ip} = -18 \text{ A)}$

- Low Ciss: Ciss = 3300 pF TYP.
- Built-in gate protection diode
- TO-251/TO-252 package

ORDERING INFORMATION

PART NUMBER	PACKAGE		
2SJ601	TO-251		
2SJ601-Z	TO-252		

ABSOLUTE MAXIMUM RATINGS (TA = 25°C)

Drain to Source Voltage (V _{GS} = 0 V)	VDSS	-60	V
Gate to Source Voltage (Vos = 0 V)	Vgss	∓20	V
Drain Current (DC) (Tc = 25°C)	I _{D(DC)}	∓36	Α
Drain Current (pulse) Note1	ID(pulse)	∓120	Α
Total Power Dissipation (Tc = 25°C)	Рт	65	W
Total Power Dissipation (T _A = 25°C)	Рт	1.0	W
Channel Temperature	Tch	150	°C
Storage Temperature	Tstg	-55 to +150	°C
Single Avalanche Current Note2	las	–35	Α
Single Avalanche Energy Note2	Eas	123	mJ

(TO-251)

(TO-252

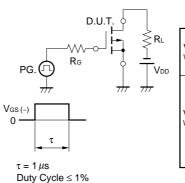
Notes 1. PW \leq 10 μ s, Duty cycle \leq 1%

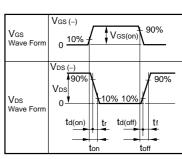
2. Starting T_{ch} = 25°C, R_G = 25 Ω , V_{GS} = -20 V \rightarrow 0 V

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

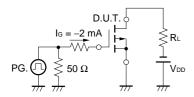
Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

ELECTRICAL CHARACTERISTICS (TA = 25°C)

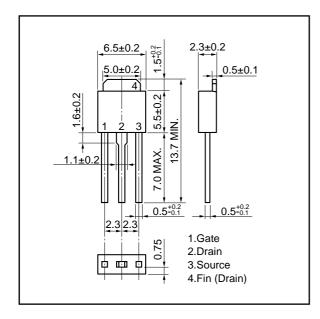

Characteristics	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Zero Gate Voltage Drain Current	Ipss	V _{DS} = -60 V, V _{GS} = 0 V			-10	μΑ
Gate Leakage Current	Igss	$V_{GS} = \mp 20 \text{ V}, V_{DS} = 0 \text{ V}$			∓10	μΑ
Gate Cut-off Voltage	V _{GS(off)}	V _{DS} = -10 V, I _D = -1 mA	1.5	2.0	2.5	V
Forward Transfer Admittance	y _{fs}	V _{DS} = -10 V, I _D = -18 A	15	30		S
Drain to Source On-state Resistance	RDS(on)1	V _G S = -10 V, I _D = -18 A		25	31	mΩ
	RDS(on)2	$V_{GS} = -4.0 \text{V}, I_{D} = -18 \text{A}$		32	46	$m\Omega$
Input Capacitance	Ciss	V _{DS} = -10 V		3300		pF
Output Capacitance	Coss	V _{GS} = 0 V		580		pF
Reverse Transfer Capacitance	Crss	f = 1 MHz		230		pF
Turn-on Delay Time	t _{d(on)}	V _{DD} = -30 V, I _D = -18 A		11		ns
Rise Time	tr	V _{GS(on)} = -10 V		12		ns
Turn-off Delay Time	t _{d(off)}	R _G = 0 Ω		80		ns
Fall Time	t f			53		ns
Total Gate Charge	Q _G	V _{DD} = -48 V		63		nC
Gate to Source Charge	Qgs	V _{GS} = -10 V		10		nC
Gate to Drain Charge	Q _{GD}	I _D = -36 A		16		nC
Body Diode Forward Voltage	V _{F(S-D)}	I _F = -36 A, V _{GS} = 0 V		1.0		V
Reverse Recovery Time	trr	I _F = -36 A, V _{GS} = 0 V		52		ns
Reverse Recovery Charge	Qrr	$di/dt = -100 A/\mu s$		108		nC


TEST CIRCUIT 1 AVALANCHE CAPABILITY

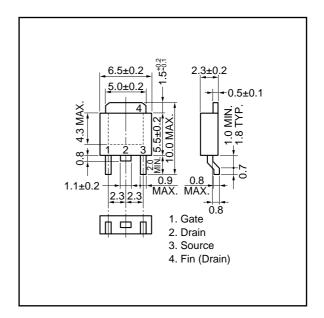
$V_{GS} = -20 \text{ V} \rightarrow 0 \text{ V}_{m}$ V_{DD} V_{DD} V_{DD} V_{DD} V_{DD} V_{DD} V_{DD} V_{DD}


Starting Tch

TEST CIRCUIT 2 SWITCHING TIME



TEST CIRCUIT 3 GATE CHARGE



PACKAGE DRAWINGS (Unit: mm)


1) TO-251 (MP-3)

2) TO-252 (MP-3Z)

EQUIVALENT CIRCUIT

Remark The diode connected between the gate and source of the transistor serves as a protector against ESD. When this device actually used, an additional protection circuit is externally required if a voltage exceeding the rated voltage may be applied to this device.